Computational Chemistry and Theory
Computational chemistry employs quantum and classical approaches to simulate molecular properties and dynamics of chemical systems. C-CAS researchers utilize computer-based techniques (ex. molecular dynamics, coupled cluster, DFT) to study reaction mechanism, develop chemical descriptors, and generate data for training new machine learning models.
Publications
Torres, Jose Antonio Garrido; Lau, Sii Hong; Anchuri, Pranay; Stevens, Jason M; Tabora, Jose E; Li, Jun; Borovika, Alina; Adams, Ryan P; Doyle, Abigail G. A Multi-Objective Active Learning Platform and Web App for Reaction Optimization. J. Am. Chem. Soc. 2022, 144,43,19999-20007. https://pubs.acs.org/doi/10.1021/jacs.2c08592
Casetti, N.; Anstine, D.; Isayev, O.; Coley, C.W. Anticipating the Selectivity of Intramolecular Cyclization Reaction Pathways with Neural Network Potentials. J. Chem. Theor. Comp. 2025, 21, ASAP. https://doi.org/10.1021/acs.jctc.5c01161
Żurański, A.M.; Wang, J.Y.; Shields, B.J.; Doyle, A.G. Auto-QChem: an automated workflow for the generation and storage of DFT calculations for organic molecules. React. Chem. Engin. 2022, 7, 1276-1284 https://doi.org/10.1039/D2RE00030J
Luchini, Guilian, and Robert Paton. "Bottom-up Atomistic Descriptions of Top-Down Macroscopic Measurements: Computational Benchmarks for Hammett Electronic Parameters." ACS Phys. Chem Au, 2024. ASAP https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00045
Bartholomew, G.L.; Karas, L.J.; Eason, R.M.;Yeung, C.S.; Sigman, M.S.; Sarpong, R. Cheminformatic Analysis of Core-Atom Transformations in Pharmaceutically Relevant Heteroaromatics. J. Med. Chem. 2025, 68, 6027-6040. doi.org/10.1021/acs.jmedchem.4c02839
Sowndarya, S. S., Kim, Y., Kim, S., John, P. C. S., & Paton, R. S. Expansion of Bond Dissociation Prediction with Machine Learning to Medicinally and Environmentally Relevant Chemical Space. Digital Discovery. Digital Discovery, 2023, 2, 1900-1910. https://doi.org/10.1039/D3DD00169E
. Liu, Z.; Vinkus, J.; Fu, Y.; Liu, P.; Noonan, K. J. T.; Isayev, O. Fast and Accurate Ring Strain Energy Predictions with Machine Learning and Application in Strain-Promoted Reactions. J. Am. Chem. Soc. Au 2025, 5, ASAP https://doi.org/10.1021/jacsau.5c00667
Luchini, G., Alegre-Requena, J. V., Funes-Ardoiz, I., Paton, R.S. GoodVibes: Automated thermochemistry for heterogeneous computational chemistry data. F1000Research, 2020, 9, 291. https://doi.org/10.12688/f1000research.22758.1
Gallegos, L.C.; Luchini, G.; St John, P.C.; Kim, S.; Paton, R.S. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties Acc. Chem. Res. 2021, 54, 4, 827-836. https://pubs.acs.org/doi/10.1021/acs.accounts.0c00745
Keto, A., Guo, T., Gonnheimer, N., Zhang, X., Krenske, E.H., Wiest, O. Improving reaction prediction through chemically aware transfer learning. Digital Discovery. DOI: 10.1039/d4dd00412d
Ickes, A.R., Liles, J.P., Borlinghaus, N., Henle, J., Swiatowiec, R., Prakash Kaushik, N., Braje, W.M., Harper, K.C., Shekhar, S. and Sigman, M.S., 2025. Leveraging Data Science to Elucidate Ligand Features for Pd-Catalyzed Enantioretentive N-Arylations of Cyclic α-Substituted Amines in Aqueous Media. J. Am. Chem. Soc. 2025, 147, ASAP https://doi.org/10.1021/jacs.5c07224
Yang, Y.; Zhang, S.; Ranasinghe, K.; Isayev, O.; Roitberg, A. “Machine Learning of Reactive Potentials.” ChemRxiv. 10.26434/chemrxiv-2023-x82fz.
Wright, Brandon A., Taku Okada, Alessio Regni, Guilian Luchini, Shree Sowndarya S. V, Nattawadee Chaisan, Sebastian Kölbl, Sojung F. Kim, Robert S. Paton, and Richmond Sarpong. "Molecular Complexity-Inspired Synthetic Strategies toward the Calyciphylline A-Type Daphniphyllum Alkaloids Himalensine A and Daphenylline." Journal of the American Chemical Society. (2024). ASAP https://doi.org/10.1021/jacs.4c11252
Sigmund LM, Sowndarya S, Albers A, Erdmann P, Paton RS, Greb L. Predicting Lewis Acidity: Machine‐Learning the Fluoride Ion Affinity of p‐Block‐Atom‐based Molecules. Angewandte Chemie International Edition. 2024 Mar 7:e202401084. https://doi.org/10.1002/anie.202401084
Haas, B., Hardy, M.A., Sowndarya, S.S., Adams, K., Coley, C.W., Paton, R.S. and Sigman, M.S., 2024. Rapid Prediction of Conformationally-Dependent DFT-Level Descriptors using Graph Neural Networks for Carboxylic Acids and Alkyl Amines. Digital Discovery. https://doi.org/10.1039/D4DD00284A
Guan, Y.; Sowndarya. S.S.; Gallegos, L.C.; St. John, P.C.; Paton, R.S., Real-Time Prediction of 1H and 13C Chemical Shifts with DFT Accuracy Using a 3D Graph Neural Network. Chem. Sci. 2021, 12, 12012-12026. https://pubs.rsc.org/en/content/articlehtml/2021/sc/d1sc03343c
Jones, K.E.; Park, B.; Doering, N.A.; Baik, M.H.; Sarpong, R. Rearrangements of the Chrysanthenol Core: Application to a Formal Synthesis of Xishacorene B. J. Am. Chem. Soc. 2021, 143, 20482–20490 https://doi.org/10.1021/jacs.1c10804
Fedik, N.; Nebgen, B.; Lubbers, N.; Barros, K.; Kulichenko, M.; Li, Y.W.; Zubatyuk, R.; Messerly, R.; Isayev, O.; Tretiak, S. "Synergy of semiempirical models and machine learning in computational chemistry." J. Chem. Phys. 2023, 159, 110901. https://pubs.aip.org/aip/jcp/article/159/11/110901/2911476
Liu, Zhen, Yurii S. Moroz, and Olexandr Isayev. "The Challenge of Balancing Model Sensitivity and Robustness in Predicting Yields: A Benchmarking Study of Amide Coupling Reactions." Chem. Sci. 2023, 14, 10835-10846. doi https://doi.org/10.1039/D3SC03902A