Mechanism

People

Chemical mechanisms are the detailed step-by-step pathways by which chemical reactions occur. Understanding reaction mechanisms is crucial for the prediction of reaction outcomes and for informing the development of more accurate models. Within C-CAS, we strive to elucidate mechanistic information about chemical transformations by combining experimental and computational approaches such as DFT, coupled cluster, ML force fields (ex. AIMNET), linear regression, and transition state calculations.

Publications

  • Bartholomew, G.L.; Kraus, S.L.; Karas, L.J.; Carpaneto, F.; Bennett, R.; Sigman, M.S.; Yeung, C.S.; Sarpong, R. “14N to 15N Isotopic Exchange of Nitrogen Heteroaromatics through Skeletal Editing” ChemRxiv 2023 .10.26434/chemrxiv-2023-30dtw

  • Gensch T, dos Passos Gomes G, Friederich P, Peters E, Gaudin T, Pollice R, et al. A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis. J. Am. Chem. Soc. 2022, 144 ASAP  https://pubs.acs.org/doi/full/10.1021/jacs.1c09718

  • Luchini, Guilian, and Robert Paton. "Bottom-up Atomistic Descriptions of Top-Down Macroscopic Measurements: Computational Benchmarks for Hammett Electronic Parameters." ACS Phys. Chem Au, 2024

  • Matthews, A.D., Peters, E., Debenham, J.S., Gao, Q., Nyamiaka, M.D., Pan, J., Zhang, L.K., Dreher, S.D., Krska, S.W., Sigman, M.S. and Uehling, M.R., 2023. Cu Oxamate-Promoted Cross-Coupling of α-Branched Amines and Complex Aryl Halides: Investigating Ligand Function through Data Science. ACS Catalysis, 13(24), 16195-16206. doi https://doi.org/10.1021/acscatal.3c04566

  • Gensch, T.; Smith, S.R; Colacot, T.J.; Timsina, Y.; Xu, G.; Glasspoole, B.W.; Sigman, M.S, Design and Application of a Screening Set for Monophosphine Ligands in Metal Catalysis. ACS Catal. 2022. 12, 13, 7773-7780.  https://doi.org/10.1021/acscatal.2c01970

  • Silva, J. D. J.;  Bartalucci, N.;  Jelier, B.;  Grosslight, S.;  Gensch, T.;  Schünemann, C.;  Müller, B.;  Kamer, P. C.;  Copéret, C.; Sigman, M. S., Development and Molecular Understanding of a Pd-catalyzed Cyanation of Aryl Boronic Acids Enabled by High-Throughput Experimentation and Data Analysis. Helv. Chim. Acta 2021 e2100200. https://doi.org/10.1002/hlca.202100200

  • Crawford, J.M.; Gensch, T.; Sigman, M.S.; Elward, J.M.; Steves, J.E.  Impact of Phosphine Featurization Methods in Process Development. Org. Proc. Res. Dev. 2022, 26, 4, 1115-1123  https://doi.org/10.1021/acs.oprd.1c00357

  • Gallegos, L.C.; Luchini, G.; St John, P.C.; Kim, S.; Paton, R.S. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties Acc. Chem. Res. 2021, 54, 4, 827-836.   https://pubs.acs.org/doi/10.1021/acs.accounts.0c00745

  • Newman-Stonebraker, Samuel; Smith, Sleight; Borowski, Julia; Peters, Ellyn; Gensch, Tobias; Johnson, Heather; Sigman, Matthew; Doyle, Abigail. Linking Mechanistic Analysis of Catalytic Reactivity Cliffs to Ligand Classification. ChemRxiv, May12, 2021. https://doi.org/10.26434/chemrxiv.14388557.v1

  • Saebi, M.;  Nan, B.;  Herr, J.;  Wahlers, J.;  Guo, Z.; Zuranski, A. M.;  Kegej, T.;  Norrby, P.-O.;  Doyle, A. G.;  Wiest, O.; Chawla, N., Wiest, O. On the Use of Real-World Data Sets for Reaction Yield Prediction.  Chem. Sci., 2023, 14, 4997-5005.  https://doi.org/10.1039/D2SC06041H

  • Jones, K.E.; Park, B.; Doering, N.A.; Baik, M.H.; Sarpong, R.  Rearrangements of the Chrysanthenol Core: Application to a Formal Synthesis of Xishacorene B. J. Am. Chem. Soc. 2021, 143, 20482–20490 https://doi.org/10.1021/jacs.1c10804

  • Zell D; Kingston C; Jermaks J; Smith S.R.; Seeger N; Wassmer J; Sirois, L.E.; Han, C.; Zhang, H.; Sigman, M.S.; Gossling, F., Stereoconvergent and -divergent Synthesis of Tetrasubstituted Alkenes by Nickel-Catalyzed Cross-Couplings. J. Am. Chem. Soc. 2021, 143, 45,19078 -19090. https://doi.org/10.1021/jacs.1c08399

  • Hardy, M.A.; Nan, B.; Wiest, O.; Sarpong, R.  Strategic elements in computer-aided retrosynthesis: A case study of the pupukeanane natural products Tetrahedron 2022, 103, 132584   https://doi.org/10.1016/j.tet.2021.132584

  • Newman-Stonebraker, S. H.;  Smith, S. R.;  Borowski, J. E.;  Peters, E.;  Gensch, T.;  Johnson, H. C.;  Sigman, M. S.; Doyle, A. G., Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis. Science 2021, 374, 301-308   science.org/doi/10.1126/science.abj4213

  • Kariofillis S, Jiang S, Żurański A, Gandhi S, Martinez Alvarado J, Doyle A. Using Data Science to Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources. J. Am. Chem. Soc. 2022, 144 ASAP . https://pubs.acs.org/doi/10.1021/jacs.1c12203