Generative Learning

People

Generative learning in chemistry allows the prediction of new molecules based on the models build e.g. for properties of a known set of molecules. This allows for example the automated design of new catalysts with improved properties. Approaches to generative learning explored in C-CAS include genetic algorithms in CoDECs and the use of large language models (LLMs).

Publications

  • Ma, C., Guo, T., Yang, Q., Chen, X., Gao, X., Liang, S., Chawla, N., Zhang, X. A Property-Guided Diffusion model for Generating Molecular Graphs. April 14, 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). doi 10.1109/ICASSP48485.2024.10447350.

  • Boiko, D.A., MacKnight, R., Kline, B. and Gomes, G., 2023. Autonomous chemical research with large language models. Nature, 624(7992), 570-578. doi: 10.1038/s41586-023-06792-0

  • Huang, Y.; Jiang, Z.; Luo, X.; Guo, K.; Zhuang, H.; Zhou, Y.; Yuan, Z.; Sun, X.; Schleinitz, J.; Wang, Y.; Zhang, S.; Surve, M.; Chawla, N. V.; Wiest, O.; Zhang, X. ChemOrch: Empowering LLMs with Chemical Intelligence via Groundbreaking Synthetic Instructions. NeuIPS 2025 accepted

  • Le, K., Guo, Z., Dong, K., Huang, X., Nan, B., Iyer, R., Zhang, X., Wiest, O., Wang, W.; Hua, T.; Chawla, N.V. MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension. Proc. 2025 ACM SIGKDD Intl. Conf. Knowl. Disc. Data Min (MLoG-GenAI@KDD ’25) 2025 https://doi.org/10.48550/arXiv.2406.06777

  • Guo, Z., Yu, W., Zhang, C., Jiang, M. and Chawla, N.V. GraSeq: Graph and Sequence Fusion Learning for Molecular Property Prediction. Proc. 29th ACM Intl. Conf. Inf. Knowl. Manag. 2020, 435-443. https://dl.acm.org/doi/10.1145/3340531.3411981

  • Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N.V., Wiest, O., Zhang, X. Large Language Model based Multi-Agents: A Survey of Progress and Challenges.  International Joint Conference on Artificial Intelligence (IJCAI 2024), survey track. Jeju Island, South Korea, August 3-9, 2024. (Acceptance rate of 20%, 48 out of 232 submissions)

  • MacKnight, R.; Boiko, D. A.; Regio J. E.; Gallegos, L.C.; Neukomm, T.A, Gomes, G. Rethinking chemical research in the age of large language models Nature Comp. Sci. 2025, doi.org/10.1038/s43588-025-00811-y

  • Guo, Taicheng, Kehan Guo, Zhengwen Liang, Zhichun Guo, Nitesh V. Chawla, Olaf Wiest, and Xiangliang Zhang. "What can GPT models do in chemistry? A comprehensive benchmark on eight tasks." NeurIPS 2023, accepted. https://doi.org/10.48550/arXiv.2305.18365