Reaction Discovery & Development Optimization
Reaction discovery identifies new tools for organic chemists to access novel scaffolds/molecules. It is often difficult, time-consuming, expensive, and wasteful to identify hits and optimize reactions. In C-CAS, we strive to use and develop computational and ML tools to expedite the process of reaction optimization.
Publications
Gensch T, dos Passos Gomes G, Friederich P, Peters E, Gaudin T, Pollice R, et al. A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis. J. Am. Chem. Soc. 2022, 144 ASAP https://pubs.acs.org/doi/full/10.1021/jacs.1c09718
Andrzej M. Żurański, Shivaani S. Gandhi, and Abigail G. Doyle. A machine learning approach to model interaction effects: development and application to alcohol deoxyfluorination. J. Am. Chem. Soc. 2023, 145,14,7898-7909. https://doi.org/10.1021/jacs.2c13093
Torres, Jose Antonio Garrido; Lau, Sii Hong; Anchuri, Pranay; Stevens, Jason M; Tabora, Jose E; Li, Jun; Borovika, Alina; Adams, Ryan P; Doyle, Abigail G. A Multi-Objective Active Learning Platform and Web App for Reaction Optimization. J. Am. Chem. Soc. 2022, 144,43,19999-20007. https://pubs.acs.org/doi/10.1021/jacs.2c08592
Haas, B.C., Kalyani, D., Sigman, M.S. Applying statistical modeling strategies to sparse datasets in synthetic chemistry. Sci. Adv. 11 (1) doi: 10.1126/sciadv.adt3013
Ma, Y. Huang, X.; Nan, B.; Moniz, N. Zhang, X.; Wiest, O.; Chawla, N.V. “Are we making much progress? Revisiting chemical reaction yield prediction from an imbalanced regression perspective” Proc. ACM WebConf 2024 790-793. https://doi.org/10.1145/3589335.3651470
Shen, Y., Borowski, J., Hardy, M., Sarpong, R. Doyle, A., Cernak, T. Automation and computer-assisted planning for chemical synthesis. Nat Rev Methods Primers, 2021, 23, 1. https://www.nature.com/articles/s43586-021-00022-5
Boiko, D.A., MacKnight, R., Kline, B. and Gomes, G., 2023. Autonomous chemical research with large language models. Nature, 624(7992), 570-578. doi: 10.1038/s41586-023-06792-0
Shields, B.J. ; Stevens, J.; Li, J.; Prarasram, M.; Damani, F.; Martinez Alvaro, J., Janey, J. Adams, R.P., Doyle, A. Bayesian Reaction Optimization as A Tool for Chemical Synthesis. Nature 2021, 590, 89-96. https://www.nature.com/articles/s41586-021-03213-y
Ortiz, K.; Dotson, J.; Robinson, D. J.; Sigman, M. S.; Karimov, R. R. “Catalyst-controlled enantioselective and regiodivergent addition of aryl boron nucleophiles to N-alkyl nicotinate salts,” J. Am. Chem. Soc. 2023, 145, 21,11781-11788. https://doi.org/10.1021/jacs.3c03048
Stenfors, B.A.; Cadge, J. A.; Aikonen, S.; Luchini, G.; Wahlers, J.; Koh, K. H.; Murronen, M.; Menche, M.; Pfeifle, M.; Keto, A.; Paton, R.; Sigman, M.S.; Wiest, O. “Conformation Dependent Features of Bisphosphine Ligand.” J. Org. Chem 2025, 90, 13874–13884 doi.org/10.1021/acs.joc.5c01682
DOI of dataset(s): doi.org/10.5281/zenodo.17086568
Zacate, S.B., Dantas, J.A., Lin, S., Doyle, A.G.; Sigman, M.S. Considerations in Pursuing Reaction Scope Generality. Angew. Chem. Int. Ed. 2025 e202511091. https://doi.org/10.1002/anie.202511091
Matthews, A.D., Peters, E., Debenham, J.S., Gao, Q., Nyamiaka, M.D., Pan, J., Zhang, L.K., Dreher, S.D., Krska, S.W., Sigman, M.S. and Uehling, M.R., 2023. Cu Oxamate-Promoted Cross-Coupling of α-Branched Amines and Complex Aryl Halides: Investigating Ligand Function through Data Science. ACS Catalysis, 13(24), 16195-16206. doi https://doi.org/10.1021/acscatal.3c04566
Gandhi, S.S., Brown, G.Z., Aikonen, S., Compton, J.S., Neves, P., Martinez Alvarado, J.I., Strambeanu, I.I., Leonard, K.A., Doyle, A.G. Data Science-Drivin Discovery of Optimal conditions and a condition-Selection Model for the Chan-Lam Coupling of Primary Sulfonamindes. ACS Catal. 2025. 15, 2292-2304. https://doi.org/10.1021/acscatal.4c07972?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
van Dijk, Lucy, Brittany C. Haas, Ngiap-Kie Lim, Kyle Clagg, Jordan J. Dotson, Sean M. Treacy, Katarzyna A. Piechowicz et al. "Data Science-Enabled Palladium-Catalyzed Enantioselective Aryl-Carbonylation of Sulfonimidamides." J. Am. Chem. Soc. 2023, 145 ASAP. https://doi.org/10.1021/jacs.3c06674
Cadge, J.A.; Lozano, C.; Merriman, M.T.; Oblad, P.; Sigman, M.S.; Reisman, S.E. A Data Science-Guided Approach for the Development of Nickel-Catalyzed Homo-Diels–Alder Reactions. J. Am. Chem. Soc. 2025, 147, ASAP. doi.org/10.1021/jacs.5c09948
Romer, N.P., Min, D.S., Wang, J.Y., Walroth, R.C., Mack, K.A., Sirois, L.E., Gosselin, F., Zell, D., Doyle, A.G. and Sigman, M.S., 2024. Data Science Guided Multiobjective Optimization of a Stereoconvergent Nickel-Catalyzed Reduction of Enol Tosylates to Access Trisubstituted Alkenes. ACS Catalysis, 14, pp.4699-4708. https://pubs.acs.org/doi/10.1021/acscatal.4c00650
Raghavan, P.; Haas, B.C.; Ruos, M.E.; Schleinitz, J.; Doyle, A.G.; Reisman, S.E.; Sigman, M.S.; Coley, C.W. Dataset Design for Building Models of Chemical Reactivity. ACS Cent. Sci 2023, 9, ASAP https://doi.org/10.1021/acscentsci.3c01163
Gensch, T.; Smith, S.R; Colacot, T.J.; Timsina, Y.; Xu, G.; Glasspoole, B.W.; Sigman, M.S, Design and Application of a Screening Set for Monophosphine Ligands in Metal Catalysis. ACS Catal. 2022. 12, 13, 7773-7780. https://doi.org/10.1021/acscatal.2c01970
Silva, J. D. J.; Bartalucci, N.; Jelier, B.; Grosslight, S.; Gensch, T.; Schünemann, C.; Müller, B.; Kamer, P. C.; Copéret, C.; Sigman, M. S., Development and Molecular Understanding of a Pd-catalyzed Cyanation of Aryl Boronic Acids Enabled by High-Throughput Experimentation and Data Analysis. Helv. Chim. Acta 2021. https://doi.org/10.1002/hlca.202100200
Feng, K., Raguram, E.R., Howard, J.R., Peters, E., Liu, C., Sigman, M.S.; Buchwald, S.L., Development of a Deactivation-Resistant Dialkylbiarylphosphine Ligand for Pd-Catalyzed Arylation of Secondary Amines. J. Am. Chem. Soc. 2024, 146 ASAP . https://doi.org/10.1021/jacs.4c09667
Wang JY, Stevens JM, Kariofillis SK, Tom MJ, Golden DL, Li J, Tabora JE, Parasram M, Shields BJ, Primer DN, Hao B. Identifying general reaction conditions by bandit optimization. Nature. 2024, 626, 1025-1033 https://doi.org/10.1038/s41586-024-07021-y
Crawford, J.M.; Gensch, T.; Sigman, M.S.; Elward, J.M.; Steves, J.E. Impact of Phosphine Featurization Methods in Process Development. Org. Proc. Res. Dev. 2022, 26, 4, 1115-1123 https://doi.org/10.1021/acs.oprd.1c00357
Raghavan, P., Rago, A.J., Verma, P., Hassan, M.M., Goshu, G.M., Dombrowski, A.W., Pandey, A., Coley, C.W. and Wang, Y., Incorporating Synthetic Accessibility in Drug Design: Predicting Reaction Yields of Suzuki Cross-Couplings by Leveraging AbbVie’s 15-Year Parallel Library Data Set. J., Am Chem. Soc. 2024, 146, 15070–15084. https://doi.org/10.1021/jacs.4c00098
Newman-Stonebraker, Samuel; Smith, Sleight; Borowski, Julia; Peters, Ellyn; Gensch, Tobias; Johnson, Heather; Sigman, Matthew; Doyle, Abigail. Linking Mechanistic Analysis of Catalytic Reactivity Cliffs to Ligand Classification. ChemRxiv, May12, 2021. https://doi.org/10.26434/chemrxiv.14388557.v1
Gardner, K.E., De Lescure, L., Hardy, M.A., Tan, J., Sigman, M.S., Paton, R.S., Sarpong, R. Modular synthesis of aryl amines from 3-alkynyl-2-pyrones. Chem. Sci. 2024. doi: 10.1039/d4sc04885g
Wright, B.A., Sarpong, R. Molecular Complexity as a Driving Force for the Advancement of Organic Synthesis. Nat Rev Chem (2024). doi:10.1038/s41570-024-00645-8
LeSueur, A., Tao, N., Doyle, A., Sigman, M. Multi-Threshold Analysis for Chemical Space Mapping of Ni-Catalyzed Suzuki-Miyaura Couplings. Chemistry Europe. Eur. J. Org. Chem. 2024 e202400428. doi:10.1002-ejoc.202400428
Saebi, M.; Nan, B.; Herr, J.; Wahlers, J.; Guo, Z.; Zuranski, A. M.; Kegej, T.; Norrby, P.-O.; Doyle, A. G.; Wiest, O.; Chawla, N., Wiest, O. On the Use of Real-World Data Sets for Reaction Yield Prediction. Chem. Sci., 2023, 14, 4997-5005. https://doi.org/10.1039/D2SC06041H
Hall, J.R., Romer, N.P., Spiller, T., Sigman, M.S., Sanford, M.S., 2025. Pd-Catalyzed Desulfonylative Fluorination of Electron Deficient (Hetero) Aryl Sulfonyl Fluorides. Chem. Sci. 2025, 16, 18936-18941 https://doi.org/10.1039/D5SC00912J
Bartholomew, G.L., Kim, S.F., Oyamada, Y., Sbordone, F., Carroll, J.A., Jurczyk, J.E., Yeung, C.S., Barner-Kowoliik, C., Sarpong, R. Phototransposition of Indazoles to Benzimidazoles: Tautomer-Dependent Reactivity, Wavelength Dependence, and Continuous Flow Studies. Angew. Chem. Int. Ed. 2025. e202423803. https://doi.org/10.1002/anie.202423803
Żurański, A.M., Martinez Alvarado, J.I., Shields, B.J. and Doyle, A.G.. Predicting Reaction Yields via Supervised Learning. Acc. Chem. Res. 2021, 54, 1856-865. https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770
Wang, J. Y.; Stevens, J. M.; Kariofillis, S. K.; Tom, M.-J.; Li, J.; Tabora, J. E.; Parasram, M.; Shields, B.; Primer, D.; Hao, B.; Del Valle, D.; DiSomma, S.; Furman, A.; Zipp, G. G.; Melnikov, S.; Paulson, J.; Doyle, A. Reinforcement learning prioritizes general applicability in reaction optimization. ChemRxiv 2023 10.26434/chemrxiv-2023-dcg9d
MacKnight, R.; Boiko, D. A.; Regio J. E.; Gallegos, L.C.; Neukomm, T.A, Gomes, G. Rethinking chemical research in the age of large language models Nature Comp. Sci. 2025, doi.org/10.1038/s43588-025-00811-y
Zell D; Kingston C; Jermaks J; Smith S.R.; Seeger N; Wassmer J; Sirois, L.E.; Han, C.; Zhang, H.; Sigman, M.S.; Gossling, F., Stereoconvergent and -divergent Synthesis of Tetrasubstituted Alkenes by Nickel-Catalyzed Cross-Couplings. J. Am. Chem. Soc. 2021, 143, 45,19078 -19090. https://doi.org/10.1021/jacs.1c08399
Novicki, J.R.; Teeter, M.D.; Baldwin, N.J.; Am Ende, C.W.; Puleo, T.R.; Richardson, A.D.; Ball, N.D. Sulfur fluoride exchange with carbon pronucleophiles. Chem. Sci.2025 ASAP doi.org/10.1039/d5sc03893f
Liu, Zhen, Yurii S. Moroz, and Olexandr Isayev. "The Challenge of Balancing Model Sensitivity and Robustness in Predicting Yields: A Benchmarking Study of Amide Coupling Reactions." Chem. Sci. 2023, 14, 10835-10846. doi https://doi.org/10.1039/D3SC03902A
Williams, W.L.; Zeng, L.; Gensch, T.; Sigman, M.S.; Doyle, A.G.; Anslyn, E. V. The Evolution of Data-Driven Modeling in Organic Chemistry. ACS Cent. Sci. 2021, 7, 1622-1637. https://doi.org/10.1021/acscentsci.1c00535
Chen, J., Guo, K., Liu, Z., Isayev, O. and Zhang, X., 2024, March. Uncertainty-Aware Yield Prediction with Multimodal Molecular Features. Proc. AAAI Conf. AI 2024 38, 8274-8282. https://doi.org/10.1609/aaai.v38i8.28668
Newman-Stonebraker, S. H.; Smith, S. R.; Borowski, J. E.; Peters, E.; Gensch, T.; Johnson, H. C.; Sigman, M. S.; Doyle, A. G., Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis. Science 2021, 374, 301-308 science.org/doi/10.1126/science.abj4213
Kariofillis S, Jiang S, Żurański A, Gandhi S, Martinez Alvarado J, Doyle A. Using Data Science to Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources. J. Am. Chem. Soc. 2022, 144 ASAP . https://pubs.acs.org/doi/10.1021/jacs.1c12203